بازشناسی مکانیسم سیستم های الگوریتمیک در فرآیند طرح و ساختار معماری

نوع مقاله : مقاله پژوهشی

نویسندگان

1 پژوهشگر دکتری تخصصی معماری، دانشکده معماری و شهرسازی، واحد قزوین، دانشگاه آزاد اسلامی، قزوین، ایران

2 استاد یار معماری، عضو هیئت علمی، دانشکده معماری و شهرسازی، واحد قزوین، دانشگاه آزاد اسلامی، قزوین، ایران

10.22034/ias.2020.249548.1361

چکیده

ظهور نظریات و روش‌های رایانشی نوین برگرفته از سیستم‎های زیست‎شناختی، در طی چند دهۀ اخیر، تعمیق در اصول و قواعد فرآیند تولید فرم را امکان‎پذیر کرده است. فرآیند الگوبرداری و الگوسازی، امروزه فراتر از حوزه شکلی بوده و مجموع دانشی که در نحوۀ شکل‌گیری اجزاء زیستی وجود دارد به حوزه ارزشمند برای تولید الگو تبدیل‌شده‌است. چنین الگوبرداری نوینی از طبیعت، در مسیری تحت عنوان طراحی الگوریتمیک یعنی خدمت گرفتن رایانش به‎عنوان ساختار اصلی فعالیت‌های رایانه، از طریق الگوریتم‌ها و کد‌ها و برنامه‎ها، معادل آنچه در طبیعت به‌عنوان ژنوم شناخته شده است میسر می‌گردد. در این پژوهش، هدف عمده بر روی ارائه چارچوبی مشخص و روشی نظام‎مند از نقش سیستم‎های زایشی در تولید فرآیندی فرم معماری می‎باشد. برای این منظور با استفاده از روش توصیفی– تحلیلی به استناد تحقیقات کتابخانه‎ای، به مطالعه، دسته‎بندی و توصیف ویژگی‎ها و مکانیسم سیستم‎های زایشی و مقایسه توانمندی هریک از آن‎ها در تولید فرم پرداخته شده است. نتیجه اینکه سیستم‎های زایشی با الهام از اصول زیست‎شناختی شکل‎گیری پدیده‎ها، در مسیر الگوریتمیک، نقش عمده‎ای در تولید فرآیندی فرم معماری، می‎تواند داشته باشد.
اهداف پژوهش:

شناخت مکانیسم سیستم‌های الگوریتمیک در فرایند تولید فرم معماری.
بررسی تولید فرایندی فرم معماری.

سؤالات پژوهش:

برای تولید فرم در معماری چه فرایندی وجود دارد؟
کدام مکانیسم سیستم‌های الگوریتمیک در فرایند تولید معماری نقش دارد؟

کلیدواژه‌ها


عنوان مقاله [English]

An Investigation on Recognition of Algorithmic Systems in Architectural Design and Structure Processes

نویسندگان [English]

  • Shahin Zoovarzi 1
  • Iman Raeisi 2
  • Maryam Armaghan 2
1 Researcher PhD in Architecture, Faculty of Architecture and Urban Planning, Qazvin Branch, Islamic Azad University, Qazvin, Iran
2 Assistant Professor of Architecture, Faculty Member, Faculty of Architecture and Urban Planning, Qazvin Branch, Islamic Azad University, Qazvin, Iran
چکیده [English]

The necessity of conducting research studies on architectural design education has gained more prominence in recent decades.Lack of familiarity with pattern constituents and standard teaching procedures, insufficient training regarding associated models and particular characteristics of architectural education on the part of architecture instructors has resulted in perceived chaos in this discipline and its affiliate fields of study.The present study has taken a developmental-applied approach to study the possibility of developing holistic and process-oriented teaching methods in architectural training and their use in architectural design. Following elaboration on relevant definitions and theories, Ashraf Salama's ten models on architectural pedagogy will be analyzed.Through this analysis, questionnaire items have been developed according to models' conceptions and their theoretical interpretation. The questionnaire have been then presented to students. To find the answer to our study questions, SPSS Software has been used and Binomial Test has been used to evaluate model items through using survey questionnaire.The sample for this study included 206 MA students in Architecture who have been enrolled in Design1&2 courses during six consecutive semesters.The researcher investigated the total impact of questionnaire items on teaching pedagogy applied in atelier instruction and finally Friedman Test has been used to rank models with regard to the scores gained by students.The results showed that pedagogical models aren’t similar in terms of their outcomes for students. Among the plethora of pedagogical models, case study and analogical models gained the highest average ranking and conceptual-testing as well as hidden curriculum models gained the lowest average ranking among students

کلیدواژه‌ها [English]

  • architecture instruction
  • design models
  • design proves
  • pedagogical models in architecture
Alfonseca, M., and Ortega, A. (1997). A Study of the Representation of Fractal Curves by L Systems and Their Equivalences. IBM Journal of Research and Development, (41)6.
Bovill, C. (1996). Fractal geometry in architecture and design.
El-khaldi, M. (2007). Mapping boundries of generative systems for design synthesis. Unpublished Master of Science Thesis . Cambridge, Massachusetts, USA: MIT.
Flake, G. W. (1998). The Computational Beauty of Nature: Computer Explorations of Fractals, Chaos, Complex Systems, and Adaptation. Cambridge: The MIT Press. 229-258.
Flake, Gary William. (2000). The Computational Beauty of Nature: Computer Explorations of Fractals. Chaos. Complex Systems. And Adaptation. Cambridge: The MIT Press. 103-106.
Frazer, J. (1995). An evolutionary architecture. London: Architectural Association Publications.
Frazer, J. H., Frazer, J. M., Liu, X., Tang, M. X. & Janssen, P. (2002). Generative and evolutionary techniques for building envelope design. 5th International GenerativeArt.
Frenay, R. (2008). Pulse: The coming age of systems and machines inspired by living things. Lincoln: University of Nebraska Press.
Gharuni Esfahani, Fateme. (2015). Bionic Architecture Designed By Nature. Tehran: Author.
Gursel, İ. D. (2012). Creative Design Exploration By Parametric Generative Systems In Architecture. Journal of the Faculty of Architecture, Middle East Technical University , 207-224.
Hensel, M. (2014). Performance-oriented architecture: rethinking architectural design and the built environment. John Wiley & Sons.
Hensel, M. & Menges, A. (2008). Versatility and Vicissitude: An Introduction to Performance in Morpho‐Ecological Design. Architectural Design, 78(2), 6-11.
Hensel, M., Menges, A., & Weinstock, M. (2004). Emergence: Morphogenetic
Design Strategies. London: Academy Press.
Hensel, M., Menges, A., & Weinstock, M. (2010). Emergent technologies and design: towards a biological paradigm for architecture. London: Routledge.
Hensel, M., Menges, A. & Weinstock, M. (2013). Emergent technologies and design: towards a biological paradigm for architecture: Routledge.
Holland, J. H. (1992). Genetic Algorithms. Scientific American, 267, 66 – 72.
Iwamoto, L. (2009). Digital fabrications: architectural and material techniques. Princeton Architectural Press.
Kaboli, Mohammad Hadi; Khandan, Elnaz. (2015). 101 Propositions for Biomimicry in Architecture. Tehran: Avalo Akhar Publishing.
Khabazi, Zubin. (2016). Digital Diposition of Materials. Mashhad: Kasra Publishing.
Lindenmayer, A., & Prusinkiewicz, P. (1990). The Algorithmic Beauty of Plants. New York: Springer-Verlag.
Oxman, R. (2006). Theory and Design in The First Digital Age. Design Studies, 229-265.
Oxman, N. (2012). Towards a material ecology. In 32nd Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA), San Francisco.
Prusinkiewicz, P. (1986). Applications of L-systems to computer imagery. Paper presented at the International Workshop on Graph Grammars and Their Application to Computer Science.
Rosenman, M., & Gero, J. (1999). Evolving designs by generating useful complex gene structures. Evolutionary design by computers, 345-364.
Soddu, C., & Colabella, E. (1995). Recreating The City’s Identity with A Morphogenetic Urban Design. Making the Cities Livable. Freiburg: Freiburg-im-Breisgau.
Steadman, P. (2008). The Evolution of Designs: Biological analogy in architecture and the applied arts. Routledge.
Taraz, Masoumeh. (2012). Bionic Architecture (bio-industry), Design of Science and Technology Park. M.A Thesis. Tehran: Tehran University, Pardis Fine Art, Architecture Faculty.
Winston, Patrick H. (1992). Artificial Intelligence.
Wolfram, Stephen. (1983). Statistical Mechanics of Cellular Automata, Rev. Mod. Phys.
http://www.fractalus.com
http://www.Arts.com
http://Jenny Sabin, jennysabin.com
http://Chris Bosse, chrisbosse.de
http://Neri Oxman, materialecology.co
http://AndrewKudless, matsysdesign.com
http://sabin-jones.com
http://tomwiscombe, tomwiscombe.com
http://www.britannica.com
http://LabStudio,phf.upenn.edu
http://Irina Chernyakova, architecture.mit.edu