نقش طراحی و موقعیت قرارگیری ساختمان در بهینه سازی مصرف انرژی (نمونه موردی : ساختمانهای مهندسی ساز شهر تهران)

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی دکتری معماری دانشکده معماری و شهرسازی دانشگاه شهید بهشتی، تهران، ایران

2 گروه معماری، دانشکده معماری و شهرسازی دانشگاه شهید بهشتی، تهران، ایران

10.22034/ias.2022.351685.2022

چکیده

ساختمان‌ها یکی از ارکان اصلی توسعۀ اجتماعی و اقتصادی کشورها می‌باشند که بخش زیادی از انرژی و منابع طبیعی را مصرف می‌کنند. سهم این بخش از مصرف انرژی، به‌طور میانگین، 30-50% می‌باشد. در ایران بر پایۀ ترازنامه انرژی سال‌های اخیر، حدود 33% از انرژی تولید شده مربوط به بخش خانگی، تجاری و عمومی، یعنی بخش ساختمانی می‌شود. محدوده تحقیق، ساختمان‌های آپارتمانی مسکونی متداول در شهر تهران می‌باشد. روش تحقیق بدین‌صورت است که 6 بلوک مسکونی مشابه و در موقعیت‌های نورگیری متفاوت، در نظر گرفته شده است. این 6 بلوک از لحاظ مساحت زمین، مساحت زیربنا، تعداد طبقات، سیستم‌های گرمایشی و سرمایشی و سایر مشخصات، کاملاً مانند هم بوده و تنها تفاوت آن‌ها، موقعیت قرارگیری آن‌ها در یک گذر می‌باشد. متغیرهای تحقیق عبارت‌اند از: جنس دیوارخارجی (سفال یا لیکا) و نمای خارجی (سنگ یا آجر)، نوع شیشه پنجره (ساده یا کم گسیل)، نوع گاز بین لایه‌های شیشه پنجره (هوا یا آرگون) و نسبت پنجره به سطح  جبهه‌های مختلف بنا و اهداف تحقیق نیز کمینه‌سازی مصرف انرژی و هزینه ساخت می‌باشند. برای بهینه‌سازی متغیرها از نرم‌افزار دیزاین بیلدر و الگوریتم ژنتیک استفاده گردید. نتایج تحقیق حاکی از این است که بهینه‌ترین حالات ممکن برای نمای خارجی، سنگ، جنس دیوار خارجی لیکا، شیشه پنجره‌ها، دوجداره کم گسیل همراه با گاز آرگون بین لایه‌های شیشه، و wwr  بهینه بلوکی که از جبهه‌های جنوب و غرب نور می‌گیرد، به ترتیب 60 % و 25% ،   wwr بهینه بلوکی که فقط از جبهه جنوب نور می‌گیرد،  55% ،  wwr  بهینه بلوکی که از جببه‌های جنوب و شرق نور می‌گیرد، به ترتیب 60% و 45%،   wwr بهینه بلوکی که از جبهه‌های شمال، جنوب و شرق نور می‌گیرد، به ترتیب 60% ، 35% و 30%، wwr  بهینه بلوکی که از جبهه‌های شمال و جنوب نور می‌گیرد، 45% و 25% و wwr بهینه بلوکی که از جبهه‌های شمال، جنوب و غرب نور می‌گیرد 40%، 35 % و 35% می‌باشد.
اهداف پژوهش:

بررسی تأثیر موقعیت قرارگیری ساختمان بر بهینه‌سازی مصرف انرژ.
به‌دست آوردن نسبت بهینه پنجره به سطح از منظر صرفه‌جویی در مصرف انرژی، در وجوه مختلف.

سؤالات پژوهش:

موقعیت قرارگیری یک ساختمان نسبت به گذر و جبهه‌های نورگیری، چه تأثیری در بهینه‌سازی مصرف انرژی دارد؟
نسبت‌های بهینه پنجره به سطح در جبهه‌های مختلف یک ساختمان، به‌منظور کمینه‌سازی مصرف انرژی چه درصدی می‌باشند؟

کلیدواژه‌ها


عنوان مقاله [English]

The role of building design and location in optimizing energy consumption (case example: engineering buildings in Tehran)

نویسندگان [English]

  • Meisam Zekavat 1
  • Mansoureh Tahbaz 2
  • Mohammadreza Hafezi 2
1 PhD student in Architecture, Faculty of Architecture and Urban Planning, Shahid Beheshti University, Tehran, Iran
2 Department of Architecture, Faculty of Architecture and Urban Planning, Shahid Beheshti University, Tehran, Iran

کلیدواژه‌ها [English]

  • Residential building
  • optimization
  • building location
  • builder design
  • genetic algorithm
  1. ترازنامه انرژی. (1393). سازمان بهره‌وری انرژی ایران.

    عباس‌نژاد، احمد و همکاران. (1390). تعیین جهت استقرار ساختمان‌ها به‌منظور بهینه‌سازی مصرف انرژی (مطالعه موردی: گرگان). "اولین همایش اقلیم، ساختمان و بهینه‌سازی مصرف انرژی، ایران.

    مرکز آمار ایران. (1395). "اطلاعات پروانه‌های ساختمانی صادر شده توسط شهرداری‌های کشور." سازمان مدیریت و برنامه‌ریزی کشور، تهران.

    میرهاشمی، سید مهدی؛ شاپوریان، سید محمد و قیابکلو، زهرا. (1389). "روشی نوین در بهینه‌سازی پنجره‌های تک‌جدار." نشریه هنرهای زیبا، دوره2، ش 43، 43-48.

    یوسفی، ف. (1396). کمینه‌سازی مصرف انرژی طول عمر ساختمان مسکونی متداول ایران با توجه به پارامترهای طراحی و روش ساخت". رساله دکتری، دانشکده فنی، دانشگاه تهران.

    Baniassadi,  A., Sajadi,  B. Amidpour,  M., & N Noori.  (2016). "Economic optimization of PCM and insulation layer thickness in residential buildings," Sustainable Energy Technologies and Assessments, vol. 14, pp. 92-99.

    Karatas  A &  El-Rayes, K. (2015). "Optimizing tradeoffs among housing sustainability objectives," Automation in Construction, vol. 53, pp. 83-94. 

    Kusiak,  A., G. Xu , Krarti, M. (2011). "Optimization of an HVAC system with a strength multi-objective particle-swarm algorithm," Energy, vol. 36, pp. 5935-5943.

    Nguyen, A., &. Reiter  S., & Rigo, P. (2014). "A review on simulation-based optimization methods applied to building performance analysis," Applied energy, vol. 113, pp. 1043-1058. 

    Lee, B.,  & Hensen, J. L. (2013). "Towards zero energy industrial halls²simulation and optimization with integrated design approach," Proceedings of the thirteenth international IBPSA conference. 

     Diakaki, C., Grigoroudis, E., & Kolokotsa, D. (2008). "Towards a multi-objective optimization approach for improving energy efficiency in buildings," Energy and Buildings, vol. 40, no. 9, pp. 1747-1754.

     Anastaselos, D., Oxizidisb, S., & Papadopoulos, A. M. (2011). "Energy, environmental and economic optimization of thermal insulation solutions by means of an integrated decision support system," Energy and Buildings, vol. 43, no.2, pp. 686ʹ694.

     Rutten, D. (2010). "Evolutionary principles applied to problem solving," 25 9. [Online]. Available: http://www.grasshopper3d.com/profiles/blogs/evolutionary-principles.

    Tuhus-Dubrow, D., & Krarti, M. (2010). "Genetic-algorithm based approach to optimize building envelope design for residential buildings," Building and Environment, vol. 45, no. 7, p. 1574ʹ1581.

     Tuhus-Dubrow, D., & Krarti, M. (2010). "Genetic-algorithm based approach to optimize building envelope design for residential buildings," Building and Environment, vol. 45, no. 7, pp. 1574ʹ1581.

     Asadi, E., da Silva, M. G,. Antunes, C. H., & Dias, L. (2012). "A multi-objective optimization model for building retrofit strategies using TRNSYS simulations, GenOpt and MATLAB," Building and Environment, vol. 56, pp. 370-378.

    Asadi, E., Da Silva, M. G.,  Antunes, C. H., & Dias, L. (2012). "Multi-objective optimization for building retrofit strategies: A model and an application," Energy and buildings, vol. 44, pp. 81-87.

    Naboni, E., Maccarini, A., Korolija, I., & Zhang, Y. (2013). "Comparison of conventional, parametric and evolutionary optimization approaches for the architectural design of nearly zero energy buildings," Proceedings of the thirteenth international IBPSA conference.

    Touloupaki, E., & Theodosiou, T. (2017). "Performance Simulation Integrated in Parametric 3D Modeling as a Method for Early Stage Design Optimization²A Review," vol. 10, no. 5, p. 637.

    Tresidder,   E., & Zhang, Y., & Forreste, A. I. (2012). "Acceleration of building design optimisation through the use of kriging surrogate models," Proceedings of building simulation and optimization, pp. 1-8. 

    Znouda, E., Ghrab-Morcos, N., & Hadj-Alouane, A. (2007). "Optimization of mediterranean building design using genetic algorithms," Energy and Buildings, vol. 39, pp. 148-153. 

    EIA, EIA. (2004). Eurostat.and BRE.

    Chantrelle, F., Lahmidi, H., Keilholz, W.  Mankibi, M. El., & Michel, P. (2011).  "Development of a multicriteria tool for optimizing the renovation of buildings," Applied Energy, vol. 88, pp. 1386-1394.

    Flager,  F., Welle, B.,  Bansal, P.  Soremekun, G.  Haymaker, J. (2009). "Multidisciplinary Process Integration and Design Optimization of a Classroom Building," Journal of Information Technology in Construction (ITcon), vol. 14, no.38, pp. 595-612.

    Kayo, G., & Ooka, R. (2010). "Building energy system optimizations with utilization of waste heat from cogenerations by means of genetic algorithmEnergy and Buildings, vol. 42, no.7, pp. 985-991.

    Rapone, G., & Saro, O. (2012).  "Optimisation of curtain wall façades for office buildings by means of PSO algorithm," Energy and Buildings, vol. 45, pp. 189-196.

    Aria, H., & Akbari, H. (2014). "Integrated and multi-hour optimization of office building energy consumption and expenditure," Energy and Buildings, vol. 82, pp. 391-398. 

     http://dynamobim.org/optimo/," [Online]. [Accessed 08 09 2017].

    Petri, I.,  Li, H.  Rezgui, Y. Chunfeng, Y,. Yuce, B. Jayan, B. (2014). "A modular optimisation model for reducing energy consumption in large scale building facilities," Renewable and Sustainable Energy Reviews, vol. 38, pp. 990-1002. 

    Carreras, J., Boer, D., Guillén-Gosálbez, G., CabezaL,Medrano, M. &  Jiménez, L. (2015). "Multi-objective optimization of thermal modelled cubicles considering the total cost and life cycle environmental impact," Energy and buildings, vol. 88, no. 1, pp. 335-346.

    Conraud-Bianchi, J. (2008). "A methodology the optimization of Building Energy, thermal and visual performance," Department of Building Civil and Environmental Engineeringl , Concordia University, Montreal, Canada.

    Shea, K.  Sedgwick, A., & Antonuntto, G. (2006). "Multi Criteria Optimization of Paneled Building Envelopes Using Ant Colony Optimization," Intelligent Computing in Engineering and Architecture, pp. 627-636.

    Suga, K., Shinsuke, K., & Hiyama, K. (2010). "Structural analysis of Pareto-optimal solution sets for multiobjective optimization: An application to outer window design problems using Multiple Objective Genetic Algorithms," Building and Environment, vol. 45, no. 5, pp. 1144-1152.

    Caldas, L. (2008). "Generation of energy-efficient architecture solutions applying GENE_ARCH: An evolution-based generative design system," Advanced Engineering Informatics, vol. 22, no. 1, pp. 5970.

    Caldas, L. (2011). "Generation of Energy-Efficient Patio Houses: Combining GENE_ARCH and a Marrakesh Medina Shape Grammar," in AAAI Spring Symposium: Artificial Intelligence and Sustainable Design.

    Caldas, L. G., &  Norford, L. K. (2003). "Genetic Algorithms for Optimization of Building Envelopes and the Design and Control of HVAC Systems," Journal of Solar Energy Engineering, vol. 125, no. 3, pp. 343352. 

     Caldas, L. G., & Norford, L. K. (2002). "A design optimization tool based on a genetic algorithm," Automation in Constructio, vol. 11, p. 173ʹ184.

    Junghans, L., & Darde, N. (2015). "Hybrid single objective genetic algorithm coupled with the simulated annealing optimization method for building optimization," Energy and Buildings, vol. 86, pp. 651-662. 

    Magnier, L., & Haghighat, F. (2010). "Multiobjective optimization of building design using TRNSYS," Building and Environment, vol. 45, p. 739ʹ746. 

     AL-Homoud, M. (2005). "A Systematic Approach for the Thermal Design Optimization of Building Envelopes," Journal of Building Physics, vol. 29, no. 2, pp. 95-119. 

    Asif, M., Muneer, T., Kelley, R. (2007). "Life cycle assessment: a case study of a dwelling home in Scotland, Building and Environment," vol. 42, no.3, pp. 1391ʹ1394.

    Baum, M., & Council, U.G.B. (2007). "Green building research funding: an assessment of current activity in the United States," US Green Building Council, Washington, DC.

    1. H. Wu, T. S. Ng and M. R. (2016). Skitmore, "Sustainable building envelope design by considering energy cost and occupant satisfaction," Energy for Sustainable Development, vol. 31, pp. 118ʹ129.

     Hamdy, M.,  Hasan, A., &  Sirén, K. (2011). "Impact of adaptive thermal comfort criteria on building energy use and cooling equipment size using a multi-objective optimization scheme,"Eenergy and Buildings, vol. 43, no. 9, pp. 2055-2067.

     Hamdy, M., Nguyen, A., & Hensen, J. (2016). "Performance comparison of multi-objective optimization algorithms for solving nearly-zero-energy-building design problems," Energy amd buildings, vol. 121, pp. 57-71.

     Palonen, M., Hamdy, M., & Hasan, A. (2013). "MOBO a new software for multi-objective building performance optimization," 13th Conference of international building performance simulation association (BS2013) , Chambery, France. 

     Rahmani, M., & Asl, A., Stoupine, S. Zarrinmehr & Yan, W. (2015). "Optimo: A BIM-based Multi-Objective Optimization Tool Utilizing Visual Programming for High Performance Building Design," The 33rd eCAADe Conference, Vienna, Austria. 

    Salminen, M., Palonen, M., & Kai, S. (2012). "Combined energy simulation and multi-criteria optimisation of a LEED-certified building," First building simulation and optimization Conference, Loughborough, UK. 

    Taheri, M., Tahmasebi, F., & Mahdavi, A. (2012). "A case study of optimization-aided thermal building performance simulation calibration," Optimization, vol. 4, no. 2.

    Bouchlaghem, N., & Letherman, K. (1990). "Numerical optimization applied to the thermal design of buildings," Energy and environment, vol. 25, no. 2, pp. 117-124.

    D'Cruz, N.,  Radford, A. D. & Gero, J. S. (1983). "A Pareto optimization problem formulation for building Performance and design," Engineering Optimization, vol. 17, no. 1, pp. 17-33.

    Delgarm, N., Sajadi, B., Kowsary, F., & Delg, S. (2016). "Multi-objective optimization of the building energy performance: A simulation-based approach by means of particle swarm optimization (PSO)," Applied Energy, vol. 170, pp. 293-303.

     Djuric, N.,  Novakovic, V., Holst, J., & Mitrovic, Z. (2007). "Optimization of energy consumption in buildings with hydronic heating systems considering thermal comfort by use of computer-based tools," Energy and Buildings, vol. 39, no. 4, pp. 471-477. 

    Online. Available: http://simulationresearch.lbl.gov/GO/index.html. [Accessed 21 9 2017].

    Penna, P., Prada, A., Cappelletti, F., & Gasparella, A. (2015).  "Multi-objectives optimization of Energy Efficiency Measures in existing buildings," Energy and Buildings, vol. 92, pp. 57-69. 

    Evins, R.,  Pointer, P., Vaidyanathan, R., & Burgess, S. (2012). "A case study exploring regulated energy use in domestic buildings using design-of-experiments and multi-objective optimisation," Building and Environment, vol. 54, p. 126-136. 

    Heijungs, R., & Frischknecht, R. (1998). "A special view on the nature of the allocation problem," International Journal of Life Cycle Assessment, vol. 3, no. 5, pp. 321-332.

     Bambrook, S. M.,  Sproul, A. B.  & Jacob, D. (2010). "Design optimisation for a low energy home in Sydney," Energy and Buildings, vol. 43, no. 7, pp. 1702-1711. 

    Attia, S., Hamdy, M., Brien, W.O & Carlucci, S. (2013). Assessing gaps and needs for integrating building performance optimization tools in net zero  energy buildings design.Energy and Buildings,vol.60,pp.110-124,2013.

    SINTEF. (2010). "Final report of: Low Resource consumption buildings and constructions by use of LCA in design and decision making," SINTEF.

    Ramesh,  T., Prakasha  P., & Shukla, K. (2010). "Life cycle energy analysis of buildings: An overview," Energy and Buildings, vol. 42, p. 1592ʹ1600.

     U.N.E.P SBCI. (2009). "Buildings and Climate Change: a Summary for Decision-Makers," United Nations Env ironmental Programme, Sustainable Buildings and Climate Initiative, Paris, pp. 1-62.

    Machairas,  V., Tsangrassoulis A., &. Axarli, K. (2014). "Algorithms for optimization of building design: A review," Renewable and Sustainable Energy Reviews, vol. 31, p. 101ʹ112. 

    Wang, W., Rivard  H., & Zmeureanu, R. (2005). "An object-oriented framework for simulation-based green building design optimization with genetic algorithms," Advanced Engineering Informatics, vol. 19, no. 1, pp. 5-23.

    Wang, W. Rivard, H., & Zmeureanu, R. (2006). "Floor shape optimization for green building design," Advanced Engineering Informatics, vol. 20, p. 363ʹ378.

     Han, X., Pei, J., Liu, J., & L. Xu. (2013). "Multi-objective building energy consumption prediction and optimization for eco-community planning," Energy and Buildings, vol. 66, pp. 22-32, 2013.

    Shi, X. (2011). "Design optimization of insulation usage and space conditioning load using energy simulation and genetic algorithm," Energy, vol. 36, no. 3, pp. 1659-1667. 

    Shi, X., Tian, Z. Chen, W., Si, B., & Jin, X. (2016). "A review on building energy efficient design optimization from the perspective of architects," Renewable and Sustainable Energy Reviews, vol. 65 , pp. 872-884, 2016.

    Tan, X. (2007). "A Parametric Building Energy Cost Optimization Tool Based On A Genetic Algorithm," College of Engineering, Texas A&M Universit.

    Tan, X. (2006). "A Parametric Building Energy Cost Optimization Tool Based on A Genetic Algorithm," College of Engineering, Texas A&M Universit.

    Huang  Y,. & Niu, J. (2016). "Optimal building envelope design based on simulated performance: History, current status and new potentials," Eergy and buildings, vol. 117, pp. 387-398, 2016.

    Yi  Z., & Korolija, I. (2010). "Performing complex paramteric simulations with JEPlus," 9th International Conference on sustainable energy technologies (SET2010), Shanghai, China.

    Yi, Z. (2009). "Parallel EnergyPlus and the development of parametric analysis tool," Eleventh International IBPSA Conference, Glasgow, Scotland